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The effect of particle coagulation on the diffusive relaxation of 
a spatially inhomogeneous aerosol 

S Simons and D R Simpson 
School of Mathematical Sciences, Queen Mary College, University of London, Mile End 
Road, London E l  4NS, U K  

Received 7 January 1988, in final form 21 March 1988 

Abstract. I t  is pointed out that during the diffusive relaxation of a spatially inhomogeneous 
aerosol, the difference in particle coagulation growth rates in regions with different particu- 
late volume fractions will result in a modification of the corresponding local particle 
diffusion coefficients. This in turn will lead to a decrease in the rate of relaxation of the 
aerosol, and results are derived for this modified relaxation, for aerosol particles with both 
compact and fractal structures in the regimes K n  << 1 and K n  >> 1. In the case of fractal 
particles with K n  >> 1, the modification is sufficiently strong for a spatial inhomogeneity in 
volume fraction to increase with the passage of time over a restricted time interval. A 
calculation of numerical values suggests that, if experimental difficulties could be overcome, 
measurement of aerosol relaxation could provide useful information on particle structure 
and coagulation effects. 

1. Introduction 

Consider an  initially spatially inhomogeneous suspension of particles in a stationary 
fluid (aerosol or hydrosol). If the volume fraction of particulate matter $(x, t )  is 
increased in some finite region of the fluid then this increase will decay, as the particles 
diffuse away, in accordance with the diffusion equation 

_-  a4 a24 - D ,  
a t  ax 

where D is the particle diffusion coefficient. On expressing 4 in the form 
X 

4(x,  t ) =  1 $(k, t )  elk' d k  
-2.z 

it immediately follows from equation (1) that each Fourier component 4 ( k ,  t )  decays 
monotonically with time, with 

(3) 
Now, the Brownian motion of the particles in the fluid which causes them to diffuse 

will at the same time cause them to coagulate (Smoluchowski 1917), so that the mean 
particle size will become progressively larger. Since the diffusion coefficient D decreases 
as the particle size increases (see table 11, coagulation will cause D to decrease 
continually with the passage of time. If we consider the situation where the spatial 
variations in 4 are small compared with the mean value of 4, then the standard theory 

4 (k ,  t )  = 4 ( k ,  0) exp(-Dk't). 
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Table 1. Expressions and values for D ( o j ,  P ( u ,  c j ,  s, a and R for compact and fractal 
structure particles in the regimes Kn<< 1 and Kn >> I .  Here, p ’ ,  7, m and a are the gas 
density, viscosity, molecular mass and accommodation coefficient respectively. p is the 
density of particulate matter and U,, R,  are respectively the volume and radius of the 
elementary spherules which form the basis of the fractal structure. 6 (  =0.56) is the reciprocal 
of the fractal dimension. 

D( U )  P ( U ,  c )  S U R  

0 . 0 5 3 k T ( : ) 6  1 . 4 k T  
Knee 1 0.56 0 - 

11Ro 311 11 

Kn >> 1 0 . 1 5 ( n 1 k T ) ~ ’ *  (:) 5.0(:) - $ ( ; + ; ) ” 2 ( u ’ + 0 8 ) 2  R 2  1 1 1 0.62 6 ( F ) 1 ’ 2 L  
p ’ ( l +  i ~ a / 8 ) R i  U: 4s 

of coagulational growth (Friedlander 1977) can be used to calculate the time variation 
of the mean particle size and  hence the time dependence of the diffusion coefficient 
D( t ) .  Equation (1) may then be used to give the analogue of equation (3) in the form 

4 ( k ,  r )=  4(k,  0) exp( - k 2  1‘ D(r) dr). 
0 

(4) 

Since D decreases with time, the above considerations imply that the effect of coagula- 
tion will be to slow down the exponential decrease of 4 ( k ,  t) with time. 

Now, apart from the effect of coagulation in modifying D ( t )  as described in the 
previous paragraph, there is another mechanism by which coagulation affects the rate 
of relaxation of 4. Thus, consider two small regions A and B, separated by distance 
I ,  such that the value of 4 in A is greater than that in B. As a result of this larger 
value of 4 the particle coagulational growth in A will exceed that in B and thus A 
will contain ‘large’ particles and B will contain ‘small’ particles. Hence the net 
particulate flux from A to B may be considered to consist of the sum of two components. 
The first is that of the ‘large’ particles which have 4 = q5A in A and 4 = 0 in B while 
the second is that of the ‘small’ particles which have 4 = 0 in A and 4 = dB in B. The 
net particulate flux from A to B is thus given by 

J = j-I(Di4~ - Ds48) 

= I - ’ [  Dl ( & A  - 4 B )  - ( Ds - 01) 4 S l  ( 5 )  
where D, and D, are the respective diffusion coefficients for ‘large’ and  ‘small’ particles. 

Now, since D decreases with increasing particle size, D,> D, and thus 

J <  I - ’ D I ( 4 A  - 4B). (6) 
The spatial variation in D produced by the spatially varying coagulation rates is thus 
such as to decrease the magnitude of the net particle flux below what it would otherwise 
be, and this effect will be present wherever there is a spatial variation in 4 (which will 
produce greater particle coagulation growth in a region of greater 4, and in turn will 
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modify D in a way which lessens the net particulate flux into regions of smaller 4 ) .  
This effect will operate in addition to the one described in the previous paragraph to 
decrease the rate of relaxation of 4, The calculation of this effect is, however, 
significantly more difficult than the calculation outlined in the previous paragraph. In 
order to tackle it we begin in the next section by considering the general equation 
which describes simultaneous diffusion and coagulation of suspended particulate 
matter. Finally we remark with reference to equation ( 5 )  that, if ( D , - D , ) $ J ~ >  
D,( # A  - &), then J < 0 and the net particle flux would be in the direction of increasing 
4, and as such would tend to increase 4A - q5B rather than decrease it. Such an effect 
has been noted previously (Simons 1987a, b) and we shall see later situations where 
it can occur in the present work. 

This paper is a continuation of previous work (Simons 1986a, b, 1987a, b )  concerned 
with the simultaneous effects of spatial diffusion and coagulation. Simons (1986a, b) 
dealt with an aerosol initially localised within a finite region and showed how, as the 
aerosol spread out, the root mean square particle displacement increased with time 
less rapidly than t”’ due to the increase in particle size resulting from coagulation. 
Simons (1987a, b) was concerned with investigating the explicit spatial dependence of 
particulate matter for the time-independent situation arising as a result of steady-state 
diffusive flow. The present paper is essentially a generalisation of this latter work to 
the situation where the distribution of particulate matter can vary both in space and 
time. Following Simons (1987a, b), we shall confine our attention to the case of particle 
diffusion in one dimension. However, there exists the possibility of extending the 
technique to two or three dimensions if subsequent work should warrant this. 

2. Basic formulation 

Let n(u,  x, t )  du be the number of particles with volumes lying between U and u+du 
per unit volume of fluid at position x and time t .  Then the general equation governing 
n takes the form 

where D( U )  is the volume-dependent particle diffusion coefficient. Here (an/at),,,, is 
the rate of change of n due to Brownian coagulation and is given by 

where P( U, U )  is the kernel describing the coagulation. We shall consider in 95 explicit 
forms for D( U )  and P( U, U); meanwhile we note that for the various situations of interest 

D( U )  = / L ? P  (9) 

P( Au, A u )  = A ”P( U, U )  (10) 

for arbitrary A, where /L, s and a take specific values (considered later) for each 
situation of interest. 

In order to tackle equation (7) we shall now assume a solution for n of the 
‘self-preserving’ form (Friedlander and Wang 1966). This has been successfully used 
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in spatially dependent problems by Simons (1986a, b, 1987a, b), and takes the form 

where V ( x ,  t )  is the mean particle volume at position x and time t .  g( w )  is a function 
which increases monotonically from zero as w increases from zero, before passing 
through a single maximum and then decreasing monotonically to zero as w + CO. It 
satisfies the relations 

lox g( w )  dw = 1; wg( w )  dw = 1. 

We now substitute from (1 1) into (7)  and proceed to take the zeroth and first moments 
with respect to U of the latter. Making use of equations (9) and (10) this yields the 
following pair of equations for 4 ( x ,  t )  and V ( x ,  t ) :  

where 

C, = lor w"g( w)  dw 

and 

R = lox lox P (  w, w')g( w)g( w ' )  dw dw'. 

In order to make (13) and (14) non-dimensional we now introduce the mean values 
over x at time t = 0 of 4 ( x ,  1 )  and V ( x ,  I ) ,  and denote these means by 4, and V, 
respectively (clearly do will be the mean value of 4 for all I) .  We then define 

when (13) and (14) take the form 

with P = C-s/Ci-5.  In order to obtain an equation f o r d  V * / d r  to supplement equation 
(17) ,  we now consider (17)  minus V* times (18). After a little manipulative algebra 
this yields 

-- ( d* ) 2 v * a v *  a ( 4* ) - ( l -P ) - -  - +--- - a v *  v * ?  1 a'v* 
6* ax ax v*'+' v*' ax' +-- -+ 4* V*". (19) a t  4 *  3 x 2  v*l+c  
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Now consider the situation at a given time t when 4* varies with X ,  but V* is 
independent of X (this corresponds to a typical spatially inhomogeneous suspension 
when it is initially formed at t = 0, with V* = 1 everywhere). At this instant the second 
and third terms on the right-hand side of equation (19) are zero and the equation 
therefore becomes 

The second term on the right-hand side is the expected contribution to aV*/aT arising 
from coagulation, and the first term represents the contribution arising from diffusion. 
However, it is clear on physical grounds that a non-zero contribution to a V*/aT due 
to diffusion can only exist if V* varies with X .  For the present situation, where V* 
is independent of X ,  the diffusional contribution to a V*/aT must be identically zero, 
and this can only be achieved if the function g( w )  is such that p = 1, corresponding 
to C, - s  = CWs. I f s  were zero, this equality would be satisfied automatically (equation 
(12)); for s non-zero it corresponds to an additional constraint on g ( w ) .  Since p = 1, 
the first term on the right-hand side of equation (19) vanishes identically, and this 
eauation becomes 

Equations (17) and (21) form the required pair of non-linear coupled equations for 
+ * ( X ,  T )  and V * ( X ,  7). 

3. The linear approximation 

In order to progress further with the solution of equations (17) and (21), it is now 
necessary to restrict consideration to the situation where at time T the variations of 
q5* and V* with X are small compared with the corresponding spatial mean values. 
We shall denote these spatially constant mean values by P(T) and V*(T); they 
satisfy equations (17) and (21) with all spatial derivatives equated to zero. Thus 

with p(0) = v * ( O )  = 1. From equation (22a), P(T) = 1 (as expected), and thus 
equation (22b) becomes 

This equation is equivalent to the standard equation describing particle growth in a 
spatially homogeneous suspension and has the solution 

- 
v*(7)=[1+(1 - - ( X ) T ] l ' ( ' - a )  (a # 1). 

4 ( x ,  t )  = 40[1+ 4'(4 r ) l  
We now let 

V ( x ,  t ) =  V ( t ) [ l +  V'(x ,  t ) ]  
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so that 

4 * ( x , T ) = 1 + d ’ ( x , 7 )  v * ( x ,  T)=V*(T)[ l+ v ’ ( x ,  T ) ] .  (25) 

We substitute these forms into equations (17) and  (21), retaining terms linear in 4‘ 
and V’. With the help of equation (23), this yields 

-==($- a+’ 1 
a7 V*‘ ax’ 
av’ 1 a’v’ d ’ - ( i - a )v ’  
a7 v*‘ ax2 v*I-u -- + -  

These equations may be simplified by changing the dimensionless time variable from 
T to U given by 

[ I  + ( 1  - a ) T ] l l - u - s ! / ~ l - m !  

U =  
1 - a - s  

They then take the form 

To tackle these equations we express 4’ (X,  U )  and V’(X, U )  as Fourier integrals of the 
form 

a- 

d’ (X ,  U )  = T(K, U )  exp( iKX)  dK 

X 

V’(X, U )  = Q ( K ,  U )  exp( iKX)  dK. 

We then change the independent variable from U to 

I_, 
1) (30) z=K2u--- - ( - ) ([ 1 + ( 1 - a ) l I -a  - s ! / (  I - a  J - 

1 - a - s  1 - a - s  

and find that B(K,  z )  = T(K, U )  and W ( K ,  z )  = Q ( K ,  U )  satisfy 

--e+sw dtl 
dz  

d W  

-- 

e - ( i - a ) w  -- --w+ 
dz ( l - a - s ) z + K 2 ‘  

We now 
conditions 
formed at 

consider the interval in which z lies and the corresponding boundary 
to be imposed on tl and W. Let us suppose that the suspension is initially 
t = 0 and we are interested in its development for 0 s t s oc. For all cases 

of interest, a < 1 (see IiS), and  we can then distinguish between a + s < 1 and a + s > 1. 
If a + s <  1, i t  follows from equation (30) that as t increases from 0 to 00, z also 
increases from 0 to CC. If  a + s > 1, then as t increases from 0 to 00, z increases from 
0 to K ’/ ( a  + s - 1). The suspension is normally initially formed with the same particle 
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size distribution everywhere, and thus V‘( X ,  0) = 0. Corresponding to the specified 
initial spatial variation in the aerosol volume fraction, we suppose that 

X 

4 ’ ( X ,  0 )  = 4b(X) = 8 , ( K )  exp(iKX) dK L 
and the boundary conditions to be applied to equations (31) are then 

To simplify equations (31) and (32), we now define a ( K ,  z )  and Y ( K ,  z)  by 

e( K ,  z) = e,( K ) e-’a( K ,  z )  

W ( K ,  z ) =  8 , ( K )  e-’Y(K, 2).  

(330) 

(33b) 

a and Y then satisfy 

d a  
dz 
-- - SY 

d Y 
dz - ( l - a - s ) z + K *  

U - (  1 - a )  Y -- 

combined with boundary conditions 

Y (  K ,  0 )  = 0 

a ( K ,  0) = 1. 

It may be readily shown that, if the right-hand side of equation (34a) is put equal to 
zero so that a = 1 for all z, then the solution for 8 given by equation (33a) ( 8  = 8, e-’) 
corresponds to the result for diffusive relaxation if one considers only the first of the 
two mechanisms that were given in the introduction for the modifying effect of 
coagulation on relaxation; for convenience we shall refer to this mechanism in the 
remainder of the paper as ‘mechanism A’. The correction to this constant value of a 
given by the full solution of equations (34) and (35) will therefore correspond to the 
modifying effect of the second mechanism given in the introduction; in the remainder 
of the paper we shall refer to this as ‘mechanism B’. 

4. Formal solution of the linearised equations 

Since we are principally interested in (+( K ,  z), we eliminate Y in equations (34) to give 

d’a d g  
d z- dz 

[(  1 - a - s )z+  K ‘ ]  --;+ (1 - a )  -- s a  = 0 

combined with boundary conditions that 

a( K ,  0 )  = 1 a’( K ,  0 )  = 0. (36b) 
At this stage it is instructive to consider the limiting values of K corresponding to 

no coagulation and to infinite coagulation. If c$’(x, t )  were expressed in the form 

4’(x,  t )  = / v( k, t )  exp(ikx) dk 
--1 
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it readily follows from equations ( 1 6 a )  and ( 2 9 a )  that 

and hence in the limit of no coagulation where R = 0, K =*. For this value of K,  
equation ( 3 6 a )  becomes d’a/dz’= 0,  and in view of the boundary conditions ( 3 6 b )  
this has the solution a ( K ,  z )  = 1 for all z as expected. It may then be readily shown 
from equations (30) and ( 3 3 a )  that the solution for 6 corresponds to the solution given 
by equation ( 3 ) .  In the opposite limit of infinite coagulation, it is clear that the 
appropriate form for a is given by the solution of equation ( 3 6 a )  with K = O .  

Now, the general solution of equation ( 3 6 a )  may be expressed in terms of the 
modified Bessel functions Z,(x) and K,(x) which are linearly independent solutions 
of the equation 

d’y dy  x2 7 + x-- (x’ + v’)y = 0 
dx-  d x  

(Magnus et a1 1966). It transpires that the general solution of equation ( 3 6 a )  is, for 
a + s < 1 ,  

U (  K ,  z) = w - ” ~ [  A( K ) Zp( 2p”’ w ” ~ )  + B( K j K p (  2p”’ w ” ’ ) ]  

a( K,  z)  = v’Y’2[A(K)Zq(2q”2v1’2) + B(K)K,(2q”’v1/‘)] 

( 3 8 a )  

( 3 8 b )  
where 0 = ( a  + s - l ) - ’ K 2 -  z and q = s / ( a  + s - 1 ) .  The boundary conditions ( 3 6 b )  
may then be used to determine A ( K )  and B ( K )  in terms of particular values of the 
modified Bessel functions and  their derivatives. In  general the resulting formulae are 
rather unwieldly and a direct numerical solution of equations (34 )  and (35 )  is more 
rewarding. However, for the important case of p = f  (to be considered in the next 
section) the modified Bessel functions may be expressed in terms of elementary 
functions to yield useful results. 

The analytic results ( 3 8 )  are also useful in predicting general behaviour of a in 
the limit of t + Q). Taking first the case of a + s < 1 ,  this limit corresponds to the result 
( 3 8 a )  as z + 00. Here, the standard asymptotic forms for the modified Bessel functions 
(Magnus et a1 1966) yields the result that, as t + CO, 

where w = z + ( l - a - s ) - ’ K ’ a n d p = s / ( l - a - s j ;  while for a + s > l ,  

Although a is thus an increasing function of z, it is clear that 6( K,  z )  = BO e-’a( K,  z )  
will be a decreasing function of z for large z and will tend to zero as t (and z )  tend 
to infinity. This means that, for cy + s < 1, the effect of mechanism B on diffusive 
relaxation will be such as to decrease the rate at which relaxation occurs, but not to 
reverse it. For the case of a + s > 1 ,  the limit of t + corresponds to z + K ’ / ( a  + s - 1 ) .  
This means that, if  we consider only the modifying effect on relaxation of mechanism 
A (whereby O l e ,  = e-’), then 6 decreases monotonically but tends to a positive non-zero 
value as t + cc. This result is equivalent to the term 

I,’D(tl d t  

in equation (4) being finite, and  corresponds physically to particle growth being 
sufficiently rapid for the diffusion coefficient to effectively become zero before all 
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spatial variations in 0 have been ‘ironed out’. To assess the effect of mechanism B we 
note that the limit of t+03 corresponds to U tending to 0 in equation (386). Using 
the leading terms in the standard power series expansions for the modified Bessel 
functions (Magnus et a1 1966), we then obtain the result that, as t + 30, 

c+(K,z)+constantx ( 4 0 ~ )  

and 

( a + s -  1)v 
e-’g( K ,  z )  + constant x 1 - [ 1 - a  

This means that, as t increases (and correspondingly U decreases), not only does U 

increase, but also e-’g increases (since a + s >  1). This in turn implies that for 
sufficiently long times the effect of mechanism B on diffusive relaxation will be such 
as to reverse the direction of the net diffusive flux and to cause the initially decreasing 
0 ( K ,  z ) /  Bo to ultimately increase and tend to a finite non-zero value as t + 03. The 
discussion in the introduction suggests that it is to be expected on physical grounds 
that this reversal of the usual behaviour should be associated with a strong variation 
with particle volume of both the coagulation rate and diffusion coefficient. This is in 
accordance with the above result that such reversal only occurs if a + s exceeds unity. 

5. Application to particle regimes 

We begin by noting that in order for formulae with the structure given by equations 
(9) and (10) to apply to particle diffusion and coagulation it is necessary that the 
particle size should either be significantly greater or significantly less than the gas 
molecular mean free path 1. These two situations correspond respectively to the 
Knudsen number Kn satisfying Kn << 1 and Kn >> 1. A further distinction concerns the 
internal particle structure. Until fairly recently it was assumed that particles possessed 
a compact structure with constant density and that the effect of coagulation of two 
particles with radii R I  and R2 was to produce a compound particle of radius ( R :  + 
Ri)”3. However, recent work has shown that this assumption may well be incorrect 
and that the internal structure of coagulating particles is probably of a fractal form 
rather than the compact form assumed hitherto (Stanley and Ostrowsky 1986, Sander 
1986, Jullien and Botet 1987). In view of this, we proceed to consider the application 
of our work to both compact and fractal structure particles, in each case considering 
both Kn << 1 and Kn >> 1. The relevant formulae for D ( v )  and P(u, U) are given by 
Friedlander ( 1977) for the case of compact structure, while analogous expressions for 
the case of fractal structure are obtained in Simons (1986b). We list all these formulae 
in table 1, together with the corresponding values of a and s; for fractal structures 
we have taken the generally accepted value of 1.8 for the dimension. As regards the 
appropriate form to be taken for R (equation (156)), this has been discussed previously 
by Simons (1986a, b) who showed that the detailed expression for R did not depend 
critically on the form taken for g (  w )  as long as this satisfied the conditions given after 
equation (11). The relevant expressions for R derived in the above papers are given 
in table 1. 

We begin by considering the case of compact particles in the regime Kn << 1 as this 
is the only situation in which simple analytic results can be obtained. Here the result 
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( 3 8 a )  is applicable with p = f. Two linearly independent modified Bessel functions 
are then y ( x )  = e‘/x”’ and  e-‘,”’’. On incorporating the boundary conditions (366), 
we then obtain from equation (38a)  that 

a ( K ,  z )  =f-’{cosh[&KCf- l ) ] + ( & K ) - ’  sinh[&KCf- l)]} (41 1 
w h e r e f = [ 1 + ( 2 ~ / 3 K * ) ] ” ~ = ( l + ~ ) ” ~ .  In  the limit of z > > l ,  this gives 

and  so B(K,  z ) / e , a  z - ” ~  exp[-z+(2z)”‘]. As regards the K variation of v ( K ,  z ) ,  we 
note that for K = E, v = 1 for all z (as expected), and  in the limit as K + 0, o( K ,  z )  + 
( 2 ~ ) - ’ ’ ~  s i n h ( 2 ~ ) ” ~ .  Thus in the limit of very large coagulation, 

B(K,  z ) / e , =  (2z) exp(-z) sinh(2z)’:‘. 

For all four cases of interest (compact and fractal structures, each with K n  << 1 and  
K n  >> l ) ,  the form for (+ as a function of z was obtained by the direct numerical solution 
of equations (34) for various values of K. The results are exhibited for the three cases 
where (Y + s < 1 in figures 1, 2 and 3 which correspond respectively to compact with 
K n  << 1, compact with Kn >> 1 and fractal with K n  << 1. In each case graphs are given 
of In[ e(  K ,  z) /  e( K ,  O)] = -z + In[a(  K,  z)] as a function of z for different values of K.  
As expected, B(K, z )  is always a monotonically decreasing function of z and, in each 
of the cases, e( K ,  z )  decreases less rapidly with z as K decreases corresponding to an  
increase in the effect of coagulation and hence in the modifying effect of mechanism 
B. A more unexpected result is that the curves in figures 1, 2 and 3 may all be 
approximated, to a greater or  lesser extent, by straight lines which implies that the 
effect of mechanism B is such as to yield the approximate result 

(42) 
where p decreases below unity as the effect of coagulation becomes more important 
and K decreases. It is readily seen that in the limit when K + 0 the curves in figures 

e ( K ,  Z )  = B(K, 0) exp(-pz) 

0 

-4 

- 
B 
4‘ -8 s 2 
a 

-12 - 

-16: 0 
1 
3 
10 

-20 Q 

0 2 4 6 8 10 12 14 16 18 x )  
z 

Figure 1. In(O(K, z ) / O ( K , O ) )  as a function of z for compact panicles with Kn<< 1. The 
value of K is shown against each plot. 
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z 

Figure 2. In( !3( K, z ) /  !3( K, 0)) as a function of z for compact particles with Kn >> 1. The 
value of K is shown against each plot. 

0 2 4 6 8 10 12 14 16 18 20 
z 

Figure 3. In(O(K,z) /O(K,O))  as a function of z for fractal particles with Kn<< 1. The 
value of K is shown against each plot. 

1, 2, and 3 correspond respectively to limiting values of p in the intervals 0.7-0.8, 
0.4-0.5 and 0.6-0.7. 

A rather different picture is presented by the case of fractal structure with Kn >> 1, 
where cy + s > 1. Here, as t increases from 0 to a, z increases from 0 to K2/0.62 
( a + s - l = 0 . 6 2 ) ,  and we have therefore given in figure 4 graphs of W =  
(0.62/K2) ln[O(K, z)/O(K, O)] = (0.62/K2){-z+ln[o(K, z ) ] }  as a function of w = 
0.62z/K2 for different values of K. For each finite value of K ,  W initially decreases 
before passing through a minimum and then increasing towards a certain value as 
w + 1. This is in agreement with the discussion after equations (40) which predicted 
just this type of behaviour with the effect of mechanism B being such as to eventually 
reverse the initial direction of diffusive flux, and it is seen that this reversal is greatest 
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W 

Figure 4. W =  ( 0 . 6 2 / K 2 )  ln((K,  z ) / O ( K , O ) )  as a function of w = ( 0 . 6 2 / K 2 ) z  for fractal 
particles with Kn >> 1. The value of K is shown against each plot. 

for low values of K,  becoming progressively weaker as K increases. It should be 
noticed that, despite this reversal, O(K, z )  never reaches its initial value O(K,  0), and  
hence this effect cannot give rise to greater localisation of particulate matter than 
existed initially. However, as t + 00 the limiting value of O ( z ) / O ( O )  can be substantially 
greater than it would have been in the absence of mechanism B. Thus, if we let 
O (  Kz/0 .62 ) /  O(0) = exp( -z) and exp( -pz) in the absence and presence respectively of 
mechanism B, we find that for K = 3.0, 1.0 and 0.3, the values of p are respectively 
0.54, 0.19 and  0.02. 

6. Numerical values 

In this section we consider numerical estimates of the effects calculated above, primarily 
in order to assess their importance in typical practical situations, but also with a view 
to deciding whether experimental measurements may be possible. We consider first 
the situation where a + s < 1 (that is, particles with a compact structure, or fractal 
structure in the regime Kn<< l),  and it is clear from figures 1, 2 and  3 that the 
proportional effect of mechanism B will increase as z increases. If we assume that 
initially O ( K ) S  0.2 (for the linear approximation to be valid), it is reasonable (on the 
basis of equation (42) and  the subsequent comments) to expect experimental measure- 
ments to be possible u p  to a value for z of about 3 and we therefore take z = 3 in the 
present discussion. Further, the effect of mechanism B will be maximised by choosing 
as small a value as possible for K,  but here there is an  important constraint arising 
from the relation 

which follows from equatJons (24) and (30). For given z, the value of K will be 
minimised by choosing V * ( T )  as large as possible, but there exist limits on V * ( T )  
arising from the fact that throughout the particle's growth it must lie entirely in one 
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regime-either Kn << 1 or Kn >> 1. For the regime Kn << 1, we take the minimum effective 
particle radius as 2 x cm (following Simons (1986a), since the molecular mean 
free path for air is about 7 x cm, since for 
larger particles differential sedimentation will modify particle coagulation. Fah the 
regime K n  >> 1, we take the minimum radius as cm, since this is the radius of a 
typical elementary smoke spherule, and the maximum radius as 2 x cm in view of 
the magnitude of the molecular mean free path (Simons 1987a). For each of the 
regimes under consideration it is then possible to obtain from equation (43) the 
minimum value (Kmin)  that K can take, together with the corresponding value of T 
from equation (24). Finally, if we then choose a value for $J~, equations ( 1 6 a )  and 
(37) can be used to give values of t and k. The results of this approach are shown in 
table 2 ,  where for each of the regimes under consideration the values are given of t 
and A ( = 2 ~ / k )  corresponding to z = 3 ,  the relevant Kmi, and a specified 40. For 
other 4o the values of t and A are readily obtainable since t a bo-' and A a bo-"*. 
We also tabulate the value of U (  Kmin,  3) which gives for K = Kmi, and z = 3 the ratio 
of the value of 4' (see equation (25)) to what it would have been in the absence of 
mechanism B. 

cm) and the maximum radius as 

Table 2. The values of K,,, and a(K,,,,  z) for z = 3 ,  together with the values of A and 
f for the stated &. Results are given for compact and fractal structure particles in the 
regimes K n  << 1 and K n  >> 1. 

( a )  Compact structure 
K n < <  1 0.29 2 x  lo-' 4 17 h 2.2 
K n  >> 1 1.10 10-'l 14 35 min 2.8 

( b )  Fractal structure 
Kn<c 1 0.72 7 x  IO-'' 4 20 h 2.7 
K n  >> 1 1.86 3 x 1 0 - ' *  16 37 min 2.9 

We now deal with the case of particles with a fractal structure in the regime Kn >> 1, 
where a + s > 1. Perhaps the main point of interest here is to consider whether the 
time interval during which 4' increases with time is accessible. We see from the graphs 
in figure 4 that for this interval to be accessible we require w = [(a + s - 1)/ K 2 ] z  to 
be able to significantly exceed 0.5, while from equations (24) and (30), we have 

As explained above, we take the minimum and maximum particle radii in this regime 
to be lov6 and 2 x cm respectively, and assuming the fractal dimension to be 1.8, 
we then obtain from equation (44) that the maximum value of w is 0.54. This suggests 
that there is little likelihood of experimentally observing an increase in the spatial 
inhomogeneity of 4, unless particles can be produced with an initial radius significantly 
less than cm. As regards estimating the effect of mechanism B, we can combine 
the minimum and maximum radii given above with the value of z = 3 to yield a value 
for Kmin and hence to complete the entries in table 2 for a fractal structure in the 
regime Kn >> 1. 

Finally, we consider the feasibility of making experimental measurements of the 
effects discussed in this paper. Practically there are difficulties: firstly, in setting u p  
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an experimental arrangement in which the physical parameters characterising the 
aerosol are accurately known; secondly, in ensuring that particle transport is due solely 
to diffusion without any contribution from convective or turbulent motion of the air; 
and, thirdly, in the measurement of 4. If these experimental difficulties could be 
overcome, it is clear that measurements of the spatial relaxation of aerosols could be 
of value both in elucidating the structure of aerosol particles and  also in verifying the 
basic coagulation theory. 
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